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Abstract. We describe a large-scale, stochastic-perturbation global optimization algorithm
used for determining the structure of proteins. The method incorporates secondary structure
predictions (which describe the more basic elements of the protein structure) into the starting
structures, and thereafter minimizes using a purely physics-based energy model. Results show
this method to be particularly successful on protein targets where structural information from
similar proteins is unavailable, i.e., the most difficult targets for most protein structure predic-
tion methods. Our best result to date is on a protein target containing over 4000 atoms and
~12,000 cartesian coordinates.

1. Introduction

The protein structure prediction problem is one of the fundamental challenges of
modern science. It is to predict the three-dimensional shape, or native state of a
protein, given its sequence of amino acids. Optimization is one of the promising
approaches to solving this problem because it is believed that, in most cases, the
native state corresponds to the minimum free energy of the protein. However,
the energy landscape of a realistic-sized protein has thousands of parameters and
an enormous number of local minimizers. This means that an efficient global
optimization approach for very large scale problems is required to solve the
problem.

The global optimization method discussed in this paper is able to make
progress on large-scale problems, such as proteins with over 200 amino acids
and thousands of cartesian coordinates, by performing global optimization on
small-scale subproblems and local optimization on the full dimensional parame-
ter space. Two features related to the specific class of problems also are integral
to its success. First, using secondary structure predictions to configure the more
basic portions of the protein is an important feature of the method. This limits
the number of candidate configurations for the protein target, which is known to
be exponential in the number of amino acids. Second, an optimization approach
will only succeed if the energy model is sufficiently accurate, and this model must
take into account the solvation environment of proteins. Our approach uses a
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unique model of solvation in conjunction with one of the well-known empirical
energy potentials.

In Section 2, we describe the types of methods that are generally used for pro-
tein structure prediction. The energy model, including our new solvation term, is
described in Section 3. A detailed description of our two-phased global optimiza-
tion approach is given in section 4, followed by results and discussion in section
5. These include promising results from a recent, blind comparison of protein
structure prediction methods. Section 6 contains a summary and conclusions.

2. Background information and approaches to protein structure
prediction

2.1. Background Chemistry Information

To understand the description of this global optimization method compared to
other protein structure prediction methods, a little background about proteins
is necessary. The basic building blocks of proteins are amino acids. The amino
acids are bonded together by peptide bonds to form a polypeptide chain, and the
ordered sequence of amino acids in the chain is referred to as the primary struc-
ture of the protein. For a given protein target, this sequence is known and is the
starting point for the protein structure prediction problem. The secondary struc-
ture of a protein refers to regular, local structure in portions of the polypeptide
chain, such as a-helices, 8-sheets and the turns that link them. Tertiary struc-
ture describes the overall shape adopted by the polypeptide chain. The goal of
protein structure prediction is to find the tertiary structure of a target protein
given its primary structure of amino acids.

2.2. Nomn-optimization Approaches

There are two major types of non-optimization methods for protein structure
prediction, both of which involve comparisons to known protein structures from
a protein database. Comparative modeling methods [3,44,14,4,15] make these
comparisons based on finding similarities in the primary sequence of amino acids,
whereas fold recognition methods [21,13,22,23] try to apply known standard
folds to the target protein. The most successful methods at the recent CASP4
conference (Fourth Community Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction, December, 2000) use information
from the sequence and structure of known proteins to form templates for pre-
dicting tertiary structure of unknown targets. For targets where this information
is unavailable, these methods may be somewhat less successful and optimization
approaches may be particularly important.
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2.3. Optimization Approaches

Optimization approaches strive to find the protein conformation that minimizes
the energy of a rugged energy landscape, a difficult global optimization prob-
lem with expontially many local minima and a huge parameter space. This ap-
proach should be capable of finding protein structures that are very different
from known structures. Because of the difficulty of the optimization problem
many of the methods of this time make some use of protein database infor-
mation. Some structure prediction methods use optimization techniques only
for those portions of protein targets whose sequence or structure do not exist
in current databases because they are “new folds” which cannot be recognized
with information from the set of currently known proteins. At the opposite end
from the non-optimization approaches described above, the method of Harold
Scheraga’s group ([28,27]) uses the information of known protein structures only
in determining the weights of various terms in their simplified potential energy
function. After preliminary global optimization on this simplified function a
Monte Carlo-based optimization is performed with a physics-based energy for
the final prediction. The approach to protein structure prediction described in
this paper uses information from known proteins only to make secondary struc-
ture predictions, but not in the tertiary structure predictions or in generating
the terms of the physics-based energy function used.

3. The Energy Function

This work and almost all other work in optimization approaches to molecular
structure prediction is based on the use of empirical energy potentials, which are
fairly simple mathematical formulas that are reasonable approximations to the
potential energy for particular classes of molecules. Commonly used empirical
potentials includle CHARMM [5], AMBER [9] and ECEPP [31]. The AMBER
molecular mechanics energy function, FamBgR, like many other functions repre-
sents the cartesian coordinates of the n atoms of the protein as a vector of length
3n. The positions of atoms may also be described by parameters r;, the distance
between the i-th atom and a designated neighboring atom, 8; the bond angle
formed by a sequence of three bonded atoms, and ¢y, a dihedral angle formed by
a sequence of four bonded atoms. These parameters are used in part of EAyBER,
which has the form

"
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The first 3 terms represent the bonded interactions, and the final terms rep-
resent the non-bonded interactions, which are comprised of Lennard-Jones and
electrostatic terms, respectively. These non-bonded interactions occur between
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every pair (i,7) of atoms and depend on the distance r;; between the pair of
atoms, and on their charges ¢;q;. The non-bonded interactions are targeted in
our “smoothing” approach described in (Sect. 5.4.1) because their extreme non-
linearity influences the difficulty of the minimization problem.

A crucial component of our energy model is the development of additional
terms to the energy function that more accurately model solvation effects, i.e. the
behavior of the protein in an aqueous environment. It has been shown clearly by
various research groups that earlier potentials do not adequately model solvation
effects and that this shortcoming significantly hinders the ability to utilize them
to determine structures of proteins by optimization-based approaches [26,32]. In
particular, new terms are needed that model hydrophobic (adverse to interaction
with water) and hydrophilic behavior.

To address this issue, an empirical solvation free energy term Esorvarion has
been added to the energy function used by the optimization. Esorvarion models
the hydrophobic effects as a two-body interaction between all aliphatic carbon
(carbon atoms not bonded to electronegative atoms, such as oxygen) centers.
This description is motivated by recent experimental, theoretical and simulation
work to determine the role of hydration forces in the structure determination of
model protein systems [33,18,40,19,39]. This work and that of others on the free
energy of association of two small hydrophobic groups (of methane or leucine
molecules) in water show this interaction potential has two minima separated by
a barrier: one for the molecules in contact and one for the molecules separated
by a distance of one water molecule. Our new solvation term embodies these
characteristics. Using a sum of Gaussians

Esowvation = »_ Y hpexp <— [W] > ) (2)

4L,j<Ne k<M

where the sum over ¢ and j is over the aliphatic carbon centers, and each of the
M Gaussians is parameterized by position (cg), depth (hg), and width (wg) so
as to describe the minima and barrier. The benefits of this form are that (1)
it introduces a stabilizing force for forming hydrophobic cores, (2) it is a well-
defined model of the hydrophobic effect for hydrophobic groups in water, and (3)
it can be described as a continuous potential that is much more computationally
tractable than an alternate approach, solvent accessible surface area models.

We tested the effect of the solvation energy function in the form (2) on con-
formations of a 70 amino acid protein uteroglobin (2utg_A) and a 71 amino
acid DNA binding protein (1pou). Using this form of potential, we found good
agreement with experiment in that the potential energy of the experimentally
determined structure was lower than the potential energy for any of the struc-
tures found by the global optimization algorithm. In order to get such good
agreement we used parameter values in (2) that exaggerate the stability of the
contact and solvent-separated minima in comparison to the parameter values
based on the experimental methane work mentioned above.
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4. The global optimization approach to protein structure prediction

The stochastic-perturbation global optimization method for protein structure
prediction (henceforth referred to as SPGOPS) consists of two phases. The first
phase generates a set of good initial structures using information specific to
the domain of protein structure prediction. This information is the prediction
of secondary structure, which is readily available through servers (e.g. [20,12]),
with accuracies averaging around 75%. Given the widespread use and high ac-
curacy of secondary structure prediction methods, it would be impractical not
to attempt to utilize them in this problem domain and only by using them can
we realistically tackle reasonable-sized problems. Secondary structure prediction
is incorporated into the first phase with the goal that the second phase begins
with structures that have much of the predicted secondary structure. This is
accomplished with the use of “biasing” functions, which are penalty terms that
bias the structures towards predicted secondary structure [16], and are described
below.

The second phase improves upon the initial structures by a combination of
breadth (work on a variety of structures) and depth (improve the current low-
est energy structures). It does this by a combination of steps that change the
structure in a restricted manner — this is accomplished by small scale global
optimization using a stochastic method based on [36] applied to a selected small
subset of the parameters — and local minimizations applied to the full structure.
A key to this step is selecting a small subset of parameters that, by changing
their value, can lead to a substantially improved structure for the entire problem.
Heuristics for doing this are discussed in section 4.2. A list is kept of all minima
obtained from the local minimizations, and after some (fixed) number of iter-
ations, this list is clustered via pairwise root mean squared deviation (RMSD)
evaluations, and ordered by energy value within each cluster. The RMSD of 2
configurations measures the closeness of their structures, i.e. a few A difference
means the structures are very similar, and beyond 10A usually means they are
not. After clustering, if the stopping criteria described below have not been met,
additional iterations of the second phase are applied, starting from a new list
containing the lowest energy minimizer from each cluster.

A very general framework that shows how the parts of the global optimization
approach fit together is given in Algorithm 4.1.

4.1. Phase 1: Generation of Starting Configurations

Phase 1 builds initial configurations that contain predicted secondary structure.
To accomplish this the “antlion” method [17,16] is used to apply server-predicted
secondary structure information in energy minimizations. The server predicts
whether each amino-acid of the target protein is «, 8 or coil (i.e. not a or §),
and gives a strength for each prediction based on tendencies from other known
proteins. The “antlion” strategy uses biasing or penalty functions designed to en-
force the information from the secondary structure prediction server in step(1b)
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Algorithm 4.1 — Basic Framework of SPGOPS

1. Phase 1: Coarse Identification of Configurations :

Generate initial configurations containing domain specific tendency information.

(a) Sampling in Full Domain:
Generate the parameters of some sample configurations.

(b) ”Biased” Full-Dimensional Local Minimizations :
Use server obtained information to create biasing terms for predicted secondary struc-
ture. Perform a local minimization from a subset of the sample points, using “biasing”
penalty functions to superimpose predicted secondary structure on the standard en-
ergy surface.

(¢) “Unbiased” Full-Dimensional Local Minimizations :
Perform a local minimization from each “biased minimizer” using the “unbiased” en-
ergy function. Save these local minimizers for Step 2a.

2. Phase 2: Improvement of Local Minimizers:

For some number of iterations:

(a) Select a Configuration and Small Subset of Parameters to Improve:
From the list of full-dimensional local minimizers, select a local minimizer to improve.
Then select a subset of the parameters of this configuration to optimize in step 2b.

(b) Small Sub-problem Global Optimization:
Apply a global optimization algorithm to the energy of the selected configuration with
only the selected parameters as variables.

(¢) Full-Dimensional Local Minimization :
Apply a local minimization procedure, with all the parameters as variables, to the
lowest energy configurations that resulted from step 2b, and merge the new local
minimizers into the list of local minimizers.

(d) Cluster Local Mimima and Test for Convergence
Cluster the list of local minimizers via pairwise RMSD and if the stopping criteria has
not been met, repeat all steps of Phase 2 from a new list of local minimizers containing
the lowest energy minimizer from each cluster.

of Algorithm 4.1. The biasing functions used are described in the two subsections
below.

To begin the entire process, a buildup procedure is used. This procedure sam-
ples on the set of dihedral angles for each amino acid which has been predicted to
be “coil” some fixed number of times, and selects the angle values that produce
the best partial energy for the part of the chain built so far, before proceeding
to the next amino acid. For amino acids which are predicted to be a or 8, the
dihedral angels are set to the ideal values for those types structures. A subset
of the best structures generated by this buildup procedure is then selected as
starting points for full dimensional local minimizations using the antlion strat-
egy, and some number of the best minimizers generated are passed to the second
phase of the algorithm.

4.1.1. Biasing functions for a-helical Proteins a-helices are rodlike contiguous
segments of tightly coiled polypeptide chain. The a-helix is stablized by hydrogen
bonds connecting the carbonyl oxygen of residue i to the amide hydrogen of
residue i + 4. Two functions have have proved very effective in encouraging
formation of a-helices. The first function,

Egy= Yy ko[l —cos(¢—¢o)] + ky[L — cos(sh — o)] 3)

dihedrals
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biases the backbone torsional angles of the amino acids of a residue that is
predicted to be an a-helix to be close to ideal values for an a-helix. Here ¢ and
o are the dihedral angles of a perfect a-helix, and k4 and ky; are force constants
related to the strength of the prediction from the prediction server. The second
function,

Eup, = —Wiita/Tsita. (4)

encourages a-helical hydrogen bonds to form between the oxygen of residue i
and the hydrogen of residue i + 4, if residues ¢ and i + 4 are predicted to be
helical. In this function, w; ;4 is the weight of the prediction confidence output
by the server, and provides a strong incentive for an intramolecular hydrogen
bond to form when residues 7 and i + 4 are strongly predicted to be helical.
Together these functions “biag” the protein towards forming a-helical shape in
regions predicted to be helix.

4.1.2. Biasing functions for Proteins containing [-sheets A [-sheet is com-
prised of 2 or more non contiguous strands of contiguous amino acids with hy-
drogen bonds connecting the carbonyl oxygen of one strand to the amide hydro-
gen of another. The two strands that are connected in a 8-sheet may run in the
same direction along the chain (parallel) or in the opposite direction (antipar-
allel), and they may be any distance apart on the amino acid chain. Forming
B-sheets in proteins is an intrinsically hard problem. Since a-helices contain
hydrogen bonds along the backbone from neighboring amino acids, these inter-
actions are relatively short and local, spanning only four residues. On the other
hand, 8-sheets usually have nonlocal hydrogen bonds, where the hydrogen bonds
span many more residues. This nonlocal nature of S-sheets requires a modified
approach to form them in a protein structure prediction algorithm. Secondary
structure predictions provide information regarding which residues or segments
of the amino-acid chain are predicted to be 8-strands, but not how these strands
align to form S-sheets.

When using secondary structure predictions of §-strands, the challenge is
to correctly pair and align the 8-strands into the correct 8-sheet(s) in the ter-
tiary structure. One of the difficulties that must be overcome is the combina-
torial explosion of possible 8-strand matches. With only two strands identified,
the choices are limited to parallel versus antiparallel orientations and hydrogen
bonds on the even or odd residues. Two strands of equal length produce four
possible matches. Often, the predictions do not yield strands of equal length,
which further multiplies the combinations by the offset length plus one. The
presence of additional strands complicates matters further by introducing even
more possible matchings, and the problem grows exponentially harder with each
additional S-strand. Thus, a biasing scheme that tests each possibility in turn
would require many time-consuming runs.

We limit this combinatorial complexity by removing some of the potential
matchings via a preprocessing step. The technique used by SPGOPS is to eval-
uate each possible pair of strands using a scoring function based on occurrences
of B-sheets in a protein database ([47]). The scoring function returns a value
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representing the bonding probability of a pair of residues for forming S-sheet
type hydrogen bonds. The scores of each possible pair of S-strands, with varying
alignments, are summed, and the best-scoring, physically feasible set of strand
pairs is selected for use in the 8 biasing function given below. If more than one
set of good-scoring, feasible strand pairs is identified, each is used in a separate
instantiation of Phase 1. Results from the various runs of Phase 1, each using
a different set of strand pairings in the biasing function, are compared and the
best structures are selected by energy values and number of contacts (hydrogen
bonds between S-strands) formed.

Since the set of hydrogen-oxygen pairs along the two strands includes both
the H-bonded and non-H-bonded pairs, a biasing function that handles both
types concurrently and without any explicit identification is necessary. In our
work, this is accomplished by the following piecewise continuous biasing function,
which couples a linear function with a sigmoid function,

o %(#+2)ifrij>a )
HBs — 67‘;_71” iff'ijSU

1+exp(—*%)

where € is the dielectric constant, r;; is the Euclidean distance between atom
i and atom j, T is a scale factor for appropriate balance with other forces in
the model, ¢ is the sigmoid offset from the origin, and w scales the sigmoid
width. The linear term (r;; > o) attracts atom pairs from afar to be at least
the distance of a typical non-H-bonded pair. Then the attractive force within
the sigmoid term (r;; < o) decays as the two atoms move nearer to each other.
There is still enough attraction, however, for the biasing function in conjunction
with the other terms in the energy function to encourage a hydrogen bond to
form between the most likely H-bonded pair, yet not too much force to disrupt a
non-H-bonded pair. The three parameters in the biasing function (7, o, w) affect
the formation of hydrogen bonds in §-sheets. Our current slate of experimental
parameters (7 = 2.09, o = 16, w = 4) appears to work well, but we still believe
there is room to improve this biasing function by tuning these parameters. In
addition to the biasing term (5) we also a use a biasing term analogous to (3)
biasing the torsion angles along the predicted S-strand towards ideal values for
a beta-sheet.

4.2. Phase 2: Improvement of local minimizers

The second phase accounts for most of the computational effort of the method.
The basic idea of this phase is to select a promising configuration from the list of
local minimizers, and then select a small subset of its variables for improvement
followed by full variable local minimization from the best resultant configura-
tions.

To describe the strategy for selecting configurations, we can use the model
of tree searching, where a tree consists of an initial minimizer and all the min-
imizers generated from it so far by applying a global optimization on a small
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subspace of torsion angles followed by a local minimization over the entire space.
In the initial iterations (typically ~10) of Phase 2, the tree with the least amount
of work performed on its members so far is selected, and the lowest energy con-
figuration in this tree that has not already been used is chosen as the configu-
ration to be improved. After the fixed number of iterations of this “balancing”
stage, the remaining iterations (also typically ~10) of Phase 2 correspond to the
“non-balancing” stage. In this stage, the lowest energy configuration is selected,
regardless of which tree it comes from. We have found that the combination of
breadth and depth in the search of the configuration space contributes to the
success of this method.

Once a configuration is chosen, a small subset of its variables is chosen for
modification by global optimization. The subset of variables consists of a small
number of dihedral or torsional angles of the protein picked randomly from the
set of amino acids predicted to be “coil” by the secondary structure prediction.
Once the subset has been determined, a stochastic global optimization proce-
dure similar to the one in [36] is executed to find the best new positions for the
chosen dihedral angles, while holding the remaining dihedral angles fixed. This
stochastic global optimization approach provides a theoretical guarantee of find-
ing the global optimum, and tests have shown it to be efficient compared to other
global optimization approaches for problems with small numbers of parameters
[37]. The global optimization method samples over the parameter space, and it
selects a sample point to be a start point for a local minimization only if that
sample point has the lowest energy of all neighboring points within a certain
distance metric. If a sample point lies within the distance metric of another
point that is lower in energy, it is assumed to lie within an existing basin of at-
traction and is rejected from further computational consideration. Because the
probabilistic theoretical guarantee is easier to satisfy computationally for small
dimensional problems, we select a subset size of ~6-10 variables (from the space
of torsion angles of the protein). This global optimization algorithm is general in
the sense that a parameter space of arbitrary dimension can be explored, how-
ever, in practice, the amount of work required to reach the theoretical guarantee
is prohibitive for large subspaces.

The small-scale global optimization allows the method to explore configu-
rations with significantly different shapes than the ones that it starts with. It
produces a number of local minimizers in the small subspace of chosen param-
eters (torsion angles). A number of those conformations with the lowest energy
values are selected for local minimizations (or “polished”) in the full variable
space. These full-scale local minimizations are less likely to produce major struc-
tural changes but can cause important, more local refinements throughout the
protein. The new full-dimensional local minimizers are then merged with those
found previously, and the entire phase is repeated a fixed number of times.

Periodically during Phase 2 the minima are ordered and clustered to decide
whether to terminate Phase 2 or continue. The clusters are defined so that mem-
bers of each cluster are within ~5 A RMSD of the lowest energy configuration in
that cluster. The number of clusters indicates the number of diverse structures
that exist at this stage. If the energy of the global minimum is no longer de-
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creasing, then the algorithm is considered to have converged. Conversely, if the
energy of the global minimizer is continuing to decrease, then more iterations of
Phase 2 are performed. In that case, the list of minimizers is reduced to the set
consisting of the lowest energy minima, from each cluster.

5. Results and Discussion

The results of the SPGOPS approach appear to be at the leading edge of pro-
tein structure prediction via optimization using a physics-based energy func-
tion, along with a small number of other groups such as [28]. In this section,
we present results of SPGOPS on 2 helical proteins, and some results from the
recent CASP4 experiment in which 163 research groups worldwide participated
in structure prediction of 43 target proteins whose structures were unknown for
the duration of the experiment and only recently released to CASP4 partici-
pants. We highlight some of our CASP4 results to demonstrate the progress of
the optimization approach in predicting the structures of more difficult protein
targets. All of our CASP4 results will be presented and analyzed in [10].

5.1. Prior Results on Helical Proteins

Recent research with our approach involved the prediction of the structure of
helical proteins with about 70 amino acids [11]. Starting with predictions of sec-
ondary structure from the neural network package of [45] that are incorporated
in Phase 1 of SPGOPS (described in Sect. 4.1), this method has determined
the structure of two helical proteins with 70 and 71 amino acids, the A-chain
of uteroglobin, 2utg A, and a four-helix bundle DNA binding protein, 1pou.
Resulting predictions for the entire structures are within 7.3 A RMSD of the
crystal structure for uteroglobin and 6.3 A RMSD of the NMR structure for
1pou. Substituting correct (known) secondary structure for the secondary struc-
ture predictions within the global optimization for 1pou resulted in structures
with RMSD’s of under 5 A. According to a recent article by [35], the probability
of obtaining a 6 A RMSD by chance is so remote that a prediction algorithm ob-
taining such structures should be considered quite successful. These results show
good ability of our method to predict the structure of moderate-sized a-helical
proteins, and also demonstrate that as secondary structure prediction improves,
the tertiary structures produced by our method will become more accurate as
well.

5.2. Recent Results from CASPJ

The CASP4 experiment ran from May 11 through Sept 15, 2000. During this
time the amino acid sequences for 43 target proteins, whose structures were just
in the process of being determined experimentally, were released to participants
for “blind” prediction. The targets were released and predictions due on various
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Fig. 1. Results for SPGOPS on 1pou with RMSD of 6.3 A. The NMR structure is on the left,
and the SPGOPS result on the right.

Fig. 2. Results for SPGOPS on uteroglobin with RMSD of 7.3 A. The crystal structure is on
the left, and the SPGOPS result is on the right.

dates during that time period, and the amount of time allocated for predicting
a specific target also was variable. Up to five models of structure prediction
for each target were accepted, however, the submission specified as “model 1”
was predominantly used for evaluation of structure predictions. We submitted
models for 8 different target proteins, sometimes submitting more than 1 model
per target, but will only discuss our “model 1” results here. We always chose as
“model 1”7 the prediction with lowest potential energy. First we present results
on secondary structure prediction accuracy for all 8 targets, showing the overall
effectiveness of Phase 1 of SPGOPS. Then we discuss results for the 8 targets
compared to the other CASP4 submissions, relative to the difficulty of predicting
the targets based on the criteria used in CASP4. Finally, we present performance
results for two of our target submissions: a 242 amino acid a-helical protein and
a 56 amino acid 8 protein.

5.2.1. Secondary Structure prediction accuracy Secondary structure prediction
methods in general are much more advanced than methods predicting overall
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tertiary structure, and we take advantage of them in the SPGOPS method.
While forming predicted a-helical segments using the biasing functions described
in section 4.1 is not very difficult due to the local nature of the hydrogen bonds
in a-helices, this task is much more difficult in the case of §-sheet formation.
B-strands may be located at distant parts of the protein, and there may be only
1 or 2 hydrogen bonds formed to hold S-strands together in a 3-sheet. We had
not used our B biasing techniques in their current form prior to CASP4. Since
we attempted to predict four CASP4 targets with S-sheets that we were able
to form to some degree, CASP4 proved to be a good test for our new biasing
techniques.

Figure 3 shows 3 lines of secondary structure for each target consisting of (1)
the secondary structure predictions we used (from [20], [12] or some combination
of prediction servers), (2) the secondary structure in our submitted model 1, and
(3) the secondary structure of the target protein. The darker lines in the figure
represent helical segments and the light segments are 8 strands. For targets 91,
99, 110 and 124, some parts of the secondary structure of our models are closer to
the target’s actual secondary structure than what was predicted. This shows that
our method not only can incorporate predicted secondary structure (in Phase
1) but sometimes can improve upon it significantly (in Phase 2). On the other
hand, for targets 97, 105 and 125, the predicted secondary structure was closer to
the target’s actual secondary structure than the secondary structure obtained
in our models although this deterioration is not nearly as significant as the
improvements in the previous set of cases. Target 98 had the predicted secondary
structure implemented accurately, but the secondary structure prediction was a
bit different from the target secondary structure.

The overall secondary structure accuracy for the model we submitted for
each target is evaluated by two numbers which are given to the left of the figure.
The “Q3” percentage is measured by the percentage of helical, beta and coil
residues predicted correctly over the number of all residues of the protein. The
segment, overlap measure (SOV) is a more structurally meaningful measure of
secondary structure prediction accuracy that also ranges from 0 to 100, and is
defined in [46]. For target 105, the SPGOPS method did not form the predicted
B-sheet, and although the individual S-strands in the model are not very far off
from being within hydrogen bond distance, the Q3 and SOV scores are both very
poor for that target. Except for Target 105, the Q3 measures of our models range
from 73.1 to 93.0, and the SOV measures range from 68.9 to 92.6, showing that
the incorporation of predicted secondary structure into the submitted models,
via the initial configurations generated by Phase 1 of SPGOPS is reasonably
successful. It is also interesting to note that in some cases where the predicted
secondary structure was in error, our algorithm was able to correct this error to
some extent in making its prediction.

5.2.2. Tertiary structure prediction performance The organizers of CASP4 have
ranked all of the targets with respect to sequence homology and fold recogni-
tion, such that the “easiest” targets have a high percentage of their sequence
similar to known proteins, “harder” targets have some but less structural sim-
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Fig. 3. The 3 lines for each target represent (1) the secondary structure predictions used to
generate initial configurations in Phase 1 of SPGOPS, (2) the secondary structure of our model
1 submission, and (3) the secondary structure of the experimental structure. The dark lines
denote a-helical and the lighter lines are S-strands. To the left, “Q3” and “SOV” are measures
of the percentage of secondary structure accuracy of our model 1 submissions.

ilarity to known proteins, and the hardest targets have very little similarity to
known proteins and are called “new folds”. The CASP4 organizers classified all
43 targets into 8 difficulty bins. In figure 4, we plot the comparative difficulty
of each protein we attempted in CASP4 versus the comparative accuracy of our
prediction to that of other groups. The difficulty measure for each target is its
(CASP4 bin number)/8 *100. The comparative accuracy measure is based on
the overall accuracy measure used in CASP, GDTrg. GDT is the global distance
test which measures the largest set of contiguous residues whose RMSD from
the target is under a certain distance cutoff. The measure GDTrg is the GDT
total score, measured as

GDTrg = (GDTP1 + GDTps + GDTps + GDTPS)/4.0, (6)

where each GDTp,, is an estimate of the percent of residues under distance cutoff
< n.0 A. The comparative accuracy ranking is the percent of groups with poorer
GDTrg scores on that protein.

The two plots in Figure 4 show that as the difficulty of the targets increases,
the GDTpg percentile of our models ranked against all other model 1 submis-
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sions generally increases as well. In other words, the SPGOPS method is rela-
tively more effective on targets where less information from known proteins is
available. This is true because most methods used for CASP4 predictions relied
heavily on knowledge from known proteins, whereas SPGOPS uses that knowl-
edge only in forming secondary structure, but not in the prediction of overall
tertiary structure. This shows that our approach has potential value where other
approaches have limitations.

Target Difficulty vs. GDT_TS percentile rank
T T T T T T T T

100

Q0

80

70

40

4 Target Difficulty a
-#- Percentile Rank

30

20

101

| | | | |
T99 T125 T110 T98 T97 T105 T91 T124
Targets

Fig. 4. Difficulty of CASP4 targets as rated by CASP4 organizers (— — ——) versus the
percentile ranking of our model 1 submissions (._____ ) using SPGOPS. The percentile ranking
of our models generally increases with target difficulty.

Two of the targets we submitted for CASP4 are interesting for very different
reasons. Qur submission for Target 99 (a synthetic construct) was relatively
poor in comparison to other predictions because this target had high sequence
homology, meaning that it closely matched known proteins. However, this is a
beta sheet protein, and while we didn’t get the overall topology right, without
using any knowledge of sequence homology we predicted a good portion (30/54
amino acid fragment shown in Figure 6) with an RMSD of under 5 A. The
overall RMSD for our target 99 model 1 submission is 7.79 A (see Figure 5).
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Target 124 (Phospholipase C beta C-terminus, turkey) was considered to be a
hard target, or new fold, by the CASP4 organizers. It was also a difficult target
from an optimization point of view, with 242 amino acids, 4102 atoms, and over
12,000 cartesian coordinates. Our model 1 submission (Figure 7) was among
the best predictions for this target, with the best GDTrg score, and an overall
RMSD of 8.46 A. After the deadline for submission to CASP4, an additional run
of Phase 2 was performed on our CASP4 result for Target 124. This new run
lowered the energy of the global minimizer from -4528 to -5095, resulting in a
new RMSD of 7.7 A. The results for this target again show the value of a physics-
based optimization method that does not rely on known protein structures for
predicting proteins with new folds.

/\
LN
ST P(-\b,
i -\
U Ny
L

Fig. 5. Results for SPGOPS on Target 99 (containing 56 amino acids) with RMSD of 7.79 A,
the right structure is our lowest energy submission, the left is the NMR structure.

Q(‘ \

5.8. Computational costs

In order to give some indication of the cost of using SPGOPS, we give an esti-
mate of the run times and amounts of computation for each of the two CASP4
predicted targets (99 and 124) highlighted in the previous subsection. For target
99, Phase 1 (step (1a)) of Algorithm 4.1 generated 10 starting configurations.
A local minimization of ~12,000 steps using beta-biasing (step 1b) was applied
to each. After Phase 1, the 10 initial minima were clustered, resulting in 3 di-
verse clusters of which the lowest energy minima from each was passed on to
Phase 2. A total of 21 iterations of phase 2 were computed, 9 of which used
the balancing paradigm for choosing configurations to minimize and 12 used the
nonbalancing paradigm. The structure we submitted to CASP4 had the lowest
overall energy, and the total computation time was roughly 36 hours elapsed
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Fig. 6. Results for SPGOPS on Target 99 for a 30 amino acid fragment with RMSD of 4.95
A, the right structure is our lowest energy submission, the left is the NMR structure.

time using 10 Avalanche (300 mhz) workstations at the University of Colorado.
For target 124, Phase 1 used only 1 extended conformer as the starting config-
uration, and local minimization with alpha-biasing was done in portions over
different segments because the configuration was too long to bias all the helix at
once. It took ~25,000 iterations for all of the a-helices to form. Phase 2 ran for
a total of 21 iterations — 14 balancing and 7 nonbalancing, running for 36 hours
on 120 processors on the Cray T3E at NERSC.

5.4. Future Work

The performance of SPGOPS in the CASP competition is very encouraging, but
there are several ways in which we believe the algorithm can be improved.

5.4.1. Smoothing the energy function In earlier work the performance of our
algorithm has been enhanced by use of smoothing, that is by replacing the
objective function by a function that mirrors the coarse grain structure of the
original function but that has a smoother fine grain structure. Thus the smoothed
function has fewer minimizers and should be easier to minimize globally. In the
context of molecular conformation problems, smoothing has been considered
by a number of researchers including [6-8,24,25,29,30,34,38,41-43]. We have
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Fig. 7. Results for SPGOPS on Target 124 (containing 242 amino acids) with RMSD of 8.46
A. The structure to the right is our lowest energy submission, and the structure to the left is
the crystal structure.

developed a simple, analytic smoothing function that replaces the terms with

1/2
the form 1/r in the non-bonded portion of equation (1) with (:;:Y ) / where
7 is a non-negative constant that is reduced to 0 as the algorithm proceeds. In
addition, in the Lennard-Jones term where 1/r is raised to the sixth and twelfth
power, we instead raise the new term to the P** and 2P power where P < 6.
Using v > 0 removes the poles, and using both P < 6 and v > 0 widen the
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basins of attraction of local minimizers. In [1,2] we show that the use of this
smoothing approach within our stochastic perturbation framework on a simple
helical protein results in a lower energy configuration than without, and that the
algorithm with smoothing finds low configurations far more efficiently and often
than without. We have not yet, however, used smoothing in conjunction with
harder proteins such as those discussed in this paper. In the future, we will apply
the smoothing approach to some of the more difficult protein targets we have
recently been predicting, in the hopes of improving accuracy and/or efficiency.

5.4.2. Improvements to the Global optimization The § biasing function de-
scribed in Section 4.1 has been recently developed, and its parameters may
require some modification to cause hydrogen bonds to form more effectively be-
tween S-strands. We will also improve the heuristics for picking dihedral angles
to enable the global optimization to focus in areas that will lead to the most
diverse new structures and/or greatest overall improvements in energy, at dif-
ferent stages within Phase 2 (sect. 4.2). Finally, our studies of efficiency issues
in both the local and global minimizations, indicate that it may be feasible to
limit the computational costs of the local minimizations without penalizing the
overall accuracy of the method.

6. Summary and Conclusions

We have presented a global optimization approach to the problem of protein
structure prediction and discussed some promising results from this approach.
We have shown that the SPGOPS approach may be useful for predicting the
structures of proteins with new folds that are not found in the sequences or folds
of known proteins. Optimization techniques are fundamental both in the large-
scale global optimization approach and in the use of biasing or penalty function
approaches to encourage the formation of predicted secondary structure. Using
an optimization approach to protein structure prediction may also be helpful
in terms of developing good energy models for proteins, and understanding the
underlying protein folding phenomena.
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